
Lab RISC-V to ARM - Control
CMPUT 229

About this lab

● This is the second ARM translation lab and the final lab overall.
● In this lab, you will be translating control flow instructions from RISC-V to ARM.

Specifically, branches and unconditional jumps.
● After finishing this lab, you're going to be able to translate a turing complete subset of

RISC-V instructions into ARM.

Your tasks in this lab

● To create a translator that turns a subset of RISC-V instructions into ARM
instructions. This subset includes branch and unconditional jump instructions,
in addition to the instructions you translated in the previous lab.

● To implement a function decoding the RISC-V branch immediate (i.e. shifting
the immediate bits into place).

Recap

● The previous lab had you translating simple instructions, translating registers,
and turning RISC-V immediates into a format usable by ARM immediate
instructions.

● We glossed over the status and control bits in the last lab, requiring they be 0
and 1110 respectively.

○ These fields, however, are integral for the conditional execution in ARM, which we'll be using
in this lab.

Branching in ARM

● The quantity of instructions to be dealt with in this lab is significantly smaller
than what you saw in Lab RISC-V to ARM - ALU, but there's a reason for
that: conditional execution of instructions.

● All instructions in ARM that have the Conditions field can be executed
conditionally. Whether or not an instruction is executed depends on whether
or not the condition represented by the Conditions field aligns with the
CPSR register.

● Though the CPSR has a variety of functions and fields, we only care about the 4 most significant
bits.

● N, Z, C and V are set to 0 or 1 based on the result of instructions with status bit 1.
○ N will be set to 1 if the result of the instruction was negative.
○ Z will be set to 1 if the result of the instruction was equal to 0
○ C will be set to 1 if the instruction results in unsigned overflow.
○ V will be set to 1 if the instruction results in signed overflow.

● Once the N, Z, C and V bits are set to 1 by an instruction, they remain unchanged until another
instruction with status bit 1 is executed.

Current Program Status Register (CPSR)

● All instructions with an S bit can be made to alter the CSPR by setting the bit to 1.
● We are only interested in conditional execution for branches. As a result, we only need to have

CSPR-altering instructions before branches.
● For simplicity, we're only going to use a single instruction for changing the CSPR. That instruction

is the CMP instruction. That means that the CMP instruction must have its S bit set to 1.
● The CMP instruction is a signed subtraction (Rn - Rm) whose results aren't saved anywhere.

○ Its encoding belongs to the Data-Processing Register format, which is shown above.

The CMP Instruction

● The Conditions field indicates when the instruction should be run. More specifically, it indicates
the state that one or more of N, Z, C and V need to be in for the instruction to get executed.

● There are 16 possible Conditions field values, but for this lab, we only care about the following:

The Conditions field

code flag check meaning in terms of the CMP instruction

1110 no flag check execute no matter what

0000 Z is set execute when Rn == Rm (i.e. Rn - Rm == 0)

1010 N equals V execute when Rn >= Rm (i.e. Rn - Rm >= 0)

ARM Branch format

● The above is the branch instruction format in ARM.
● The L bit represents whether (1) or not (0) the address directly after the branch should be

saved to the link register when the branch is taken.
● The Offset represents the value to be added to the current program counter in order to

reach the target of the branch, however there are some quirks that must be considered.

● RISC-V branch instructions contain immediate bits 12-1, with bit 0 always implicitly set to 0.
Upon instruction execution, this immediate is added to the PC.

● In ARM, the offset encoded in the instruction is shifted left by 2 bits (i.e. multiplied by 4)
and then added to the PC.

● ARM, unlike RISC-V, always prefetches 2 instructions ahead, incrementing the program
counter accordingly. This means that a branch at address 0x00000000 will be executed
when the program counter is equal to 0x00000008.

● Thus, since the offset is added to the program counter, it needs to be 8 smaller than the
actual difference between the addresses of the branch and its target.

ARM Branch format

Translating Branches

● Branches are the only instructions that will need to be executed conditionally.
● Since each branch can be different than the one right before it, a CMP instruction

needs to precede each one.
● As a result, each RISC-V branch must be translated into a CMP followed by a

branch.
● This, however, creates a bit of a problem: how do we keep track of the branch

offset?
○ Since there may be branch instructions between a branch and its target, the

RISC-V offset alone is no longer sufficient.
○ We need an algorithm to allows us to keep track of where in the ARM binary

the target is.

A two-pass approach

● Though you're free to implement any method to keep track of ARM branch
targets, we suggest one involving two passes over a set of tables.

● You will use a RISC-V to ARM table to keep track of what address in the ARM
binary the translated RISC-V instruction gets written to.

● You will also use a second table that, for each RISC-V branch, will keep track
of the row address in the RISC-V to ARM table corresponding to its target.

● On the first pass, you will fill out the two tables, putting a 0 in the second table
when an instruction isn't a branch. On the second pass, you will use the
second table to track down the ARM address of the branch's target and, after
calculating the correct offset for the address of the branch, fill it into the
branch.

Tips

● Use the provided test cases, in addition to your own, to test for various edge
cases.

● Make sure to get started early because it may take a while to wrap your head
around how to implement the presented two-pass algorithm.

University of Alberta Code of Student Behavior

30.3.2(1) Plagiarism
No Student shall submit the words, ideas, images or data of another person as the
Student’s own in any academic writing, essay, thesis, project, assignment,
presentation or poster in a course or program of study.

30.3.2(2) Cheating
30.3.2(2) d No Student shall submit in any course or program of study, without the
written approval of the course Instructor, all or a substantial portion of any
academic writing, essay, thesis, research report, project, assignment,
presentation or poster for which credit has previously been obtained by the
Student or which has been or is being submitted by the Student in another
course or program of study in the University or elsewhere

http://www.governance.ualberta.ca/en/CodesofConductandResidenceCommunityStandards/
CodeofStudentBehaviour.aspx

http://www.governance.ualberta.ca/en/CodesofConductandResidenceCommunityStandards/CodeofStudentBehaviour.aspx
http://www.governance.ualberta.ca/en/CodesofConductandResidenceCommunityStandards/CodeofStudentBehaviour.aspx

Overview

